THE LEFSCHETZ CONDITION ON PROJECTIVIZATIONS OF COMPLEX VECTOR BUNDLES

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Noether-Lefschetz theorem for vector bundles

In this note we use the monodromy argument to prove a NoetherLefschetz theorem for vector bundles.

متن کامل

Extensions of Vector Bundles with Application to Noether-lefschetz Theorems

Given a smooth, projective variety Y over an algebraically closed field of characteristic zero, and a smooth, ample hyperplane section X ⊂ Y , we study the question of when a bundle E on X, extends to a bundle E on a Zariski open set U ⊂ Y containing X. The main ingredients used are explicit descriptions of various obstruction classes in the deformation theory of bundles, together with Grothend...

متن کامل

On the classification of complex vector bundles of stable rank

Abstract. One describes, using a detailed analysis of Atiyah–Hirzebruch spectral sequence, the tuples of cohomology classes on a compact, complex manifold, corresponding to the Chern classes of a complex vector bundle of stable rank. This classification becomes more effective on generalized flag manifolds, where the Lie algebra formalism and concrete integrability conditions describe in constru...

متن کامل

On the Periodicity Theorem for Complex Vector Bundles

where K ( X ) is the Grothendleck group (2) of complex vector bundles over X. The generaI theory of these K-groups, as developed in [1], has found many applications in topology and related fields. Since the periodicity theorem is the foundation stone of all this theory i t seems desirable to have an elementary proof of it, and it is the purpose of this paper t(~ present such a proof. Our proof ...

متن کامل

Weak Equivalence Classes of Complex Vector Bundles

For any complex vector bundle Ek of rank k over a manifold Mm with Chern classes ci ∈ H2i(Mm, Z) and any non-negative integers l1, · · · , lk we show the existence of a positive number p(m, k) and the existence of a complex vector bundle Êk over Mm whose Chern classes are p(m, k) · li · ci ∈ H2i(Mm, Z). We also discuss a version of this statement for holomorphic vector bundles over projective a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications of the Korean Mathematical Society

سال: 2014

ISSN: 1225-1763

DOI: 10.4134/ckms.2014.29.4.569